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ABSTRACT 
This paper presents the design and fabrication of a textile-

based soft Electromyography (EMG) sensor and machine-
learning-based methods to detect muscle spasticity. The textile 
EMG sensor is flexible, foldable, stretchable, washable for 
multiple times, and easily customizable to meet the 
heterogeneous needs of SCI individuals. The machine learning 
algorithms that can estimate the muscle status and the 
performance of functional ADLs by classification of function 
ADLs and the detection of muscle spasticity. The soft textronic 
sensors, its intelligent machine learning algorithms, and 
biofeedback-based rehabilitation has the potential to enable 
home-based rehabilitation and encourage more manipulation 
for function ADLs and independence in SCI and stroke 
individuals. 
 
INTRODUCTION 
 High-dosage rehabilitation is beneficial for functional 
recovery, which encourages the spinal cord injury (SCI) patients 
to use their affected limbs as much as possible. Rehabilitation in 
home settings could provide high-dosage rehabilitation of 
activity of daily living (ADL). However, SCI and stroke 
individuals typically suffer from spasticity, which significantly 
limits the movement control and quality of their daily lives thus 
the dosage. Hence, a system that can monitor the physiological 
condition and measure spasticity in their daily life is desirable. 
The purpose of this study is to customize the soft fabric sensors 
to maximize the comfort, measure muscle activities for SCI 
individuals, and to develop machine-learning-based algorithms 
to detect muscle spasticity. 
 
METHODS 

The wearable technology has numerous fields of 
applications capturing and emphasizing several key trends such 
as sports and leisure, healthcare, apparel, fashion, and consumer 
electronics. However, it is still rarely adopted by individuals with 
SCI or stroke as those devices are typically rigid, heavy, bulky 
and uncomfortable. Our soft sensing fabric [1-5] is substantially 

different from other solutions because it is made of textile that is 
flexible, foldable, stretchable, washable for multiple times. 
Unlike rigid wearable device and other health monitor devices 
(e.g. Yamaguchi University belt-type cardiorespiratory signal 
sensor [6], Northwestern University wearable EMG sensors [7], 
Zio patch [8]), soft sensing fabric interfaces to the body via 
unobtrusive, conformal, and compliant textile material and also 
measure the bio-potential signal (ECG and respiratory signal), 
motion information (accelerate, angular velocity), activities 
detection (walking, running, climbing, and falling), and 
biofeedback (falling alarm, heart rate, heart rate variability, 
respiratory rate).  

We have developed a soft wearable sensor [2-6] to measure 
EMG signals. Then we collected data from one SCI subject and 
extracted the key features. We then performed feature selection 
and trained a linear model and compared it with a recently 
developed model [9]. 

      
Fig. 1. (Left) Demonstration of the soft fabric sensor in an SCI subject. 
(Right) The real-time recording for the EMG signal of biceps and 
triceps.  

 

 
Fig. 2. (Top) Microcontroller integrated into the textile sensor for EMG 
measurement and wireless transmission. (Bottom) The configuration of 
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fabric EMGs: the EMG sensors have five electrodes, two pairs of 
electrodes for measuring biceps and triceps muscle signal separately, 
another one electrode as a reference.   

Spasticity is the symptom of abnormal muscle contraction 
due to neurological disorders, such as spinal cord injury, stroke, 
multiple sclerosis, and cerebral palsy. The EMG signal of 
spasticity from our data set is shown as Fig. 3 (a). Assessing the 
progression of spasticity during clinical interventions and at 
home is key to rehabilitation efficacy and care management [8].  

In order to discriminate the spasticity in the subjects with 
SCI, we collected data from one SCI subject and compared the 
15 features from [9]. The data extracted procedure is similar to 
the method of [9] and is shown in Fig. 3 (b). The raw EMG data 
is firstly split into windows with the size of 0.5s and the slide of 
0.1s. For each window, the statistics form the features of each 
data point, while whether the subject has spasticity during this 
period forms the label of each data point. To compare our model 
with the model in [9], 2 sets of features are extracted. One set 
contains the same 15 features as [9], while the other one contains 
only the mean of absolute value (MAV) and the root-mean-
square value (RMS). 

 

(a) 

 
(b) 

Fig 3.  (a) The EMG signal of muscle with spasticity. (b) The samples 
in 0.5 second are used as the extracted data set and the interval of each 
extracted data is 0.1 second.  
 
The whole dataset used in this research consists of two parts: one 
is the data gathered from our own EMG sensor, and another is 
the dataset in [9]. These two datasets are represented as Our Data 
and Northwestern University (NWU) Data respectively in the 
following part. Both datasets use EMG signals from 
Gastrocnemius. Two models are trained: one model is trained on 
our dataset by a Logistic Regression method (linear model), 
while the other one is from [9]. These two models are represented 
as Our Model and NWU Model respectively. Both models are 
tested on two datasets for comparing purpose. 
 
RESULTS 
Based on the data analysis, it is observed that the two most 
important features are MAV and RMS and that the spasticity 
have higher power density spectrum (PDS) than normal muscle 
contraction in the lower frequency between 0~40 Hz. In Fig. 4 

(a), the red points represent spasticity, the blue points represent 
voluntary contraction, and it is straightforward to separate the 
two groups by a green line. We compared the receiver operating 
characteristic (ROC) curve between our model and NWU model 
[9]. It demonstrates that our 2-features model has similar 
performance on both Our Data and NWU Data without 
significant loss of accuracy shown as in Fig. 4 (b), while NWU 
Model has a significant loss in accuracy on Our Data, which 
indicates that our model is more generic in different data sets, 
sensors, and subjects. The loss of robustness of NWU’s high-
dimension model could be caused by the systematic variances 
between the sensors and subjects, which change the properties of 
some features. 
 

 
(a) 

 
(b) 

Fig 4.  (a) Extracted data points of EMGs: The Mean-Absolute-Value 
(MAV) and Root-Mean-Square (RMS) based on 0.5s window size. The 
red cluster represents spasticity, while the blue cluster represents 
voluntary contraction. The green line is the boundary of our linear 
classifier. (b) ROC to compare different models: NWU’s 15-features 
model has better performance on Northwestern University dataset, with 
significantly worse performance on our dataset. Our 2-features model 
has similar performance on both NWU’s and our datasets without loss 
of accuracy, which indicates that our model is more generic in different 
data set, sensors, and subjects. 
 
CONCLUSIONS 
Our soft EMG sensor is more conformal, comfortable and 
durable than conventional rigid EMG sensors while it 
demonstrates similar accuracy with those golden standard EMG 
sensors. Since we only deploy two features and the model is 
linear, which means our model only uses a small amount of space 
and calculation resources, our model can be easily implemented 
and used to detect spasticity in an embedded system. The ROC 
result indicates that our model is more generic across different 
dataset, sensors, and subjects. The future work will focus on 
system evaluation with standard EMG sensors and integration 
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with a soft robotic glove [8] for assistance and rehabilitation in 
the home and community settings. 
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